TECHNICAL REPORT 55 MARCH 2008

Posterior Computation for Hierarchical Dirichlet Process Mixture Models: Application to Genetic Association Studies of Quantitative Traits in the the Presence of Population Strati cation

> Nicholas M. Pajewski¹ and Purushottam W. Laud Division of Biostatistics Department of Population Health Medical College of Wisconsin

de ned as follows.

$$L(Y_{i}|_{i};) = \frac{1-2}{\sqrt{2}} \exp \frac{-1}{2} (Y_{i} - I_{i})^{2}$$

$$= \frac{1}{\sqrt{2}} \exp \frac{-1}{2} (Y_{i} - I_{i})^{2}$$

$$= \frac{2W_{ii} e^{\pi(2V_{ii} + W_{ii})}}{(1 + e^{\pi})^{2}} = 1; ::: N \quad I = 1; ::: L$$

$$= \frac{1}{\sqrt{2}} \exp \frac{-1}{2} (Y_{i} - I_{i})^{2}$$

$$= \frac{2W_{ii} e^{\pi(2V_{ii} + W_{ii})}}{(1 + e^{\pi})^{2}} = 1; ::: N \quad I = 1; ::: L$$

$$= \frac{1}{\sqrt{2}} \exp \frac{-1}{2} (Y_{i} - I_{i})^{2}$$

$$= \frac{2W_{ii} e^{\pi(2V_{ii} + W_{ii})}}{(1 + e^{\pi})^{2}} = 1; ::: N \quad I = 1; ::: L$$

$$= \frac{1}{\sqrt{2}} \exp \frac{-1}{2} (Y_{i} - I_{i})^{2}$$

$$= \frac{2W_{ii} e^{\pi(2V_{ii} + W_{ii})}}{(1 + e^{\pi})^{2}} = 1; ::: N \quad I = 1; ::: L$$

$$= \frac{1}{\sqrt{2}} \exp \frac{-1}{2} (Y_{i} - I_{i})^{2}$$

$$= \frac{2W_{ii} e^{\pi(2V_{ii} + W_{ii})}}{(1 + e^{\pi})^{2}} = 1; ::: N \quad I = 1; ::: L$$

$$= \frac{1}{\sqrt{2}} \exp \frac{-1}{2} (Y_{i} - I_{i})^{2}$$

$$= \frac{1}$$

Note: Throughout the document, we use the following parametrization of gamma density, $X \sim \text{Gamma}(\cdot;\cdot)$,

$$f(x) \propto x^{-1}e^{-x}$$

In the above formulation, $_{II} = \text{logit}$ ($_{II}$) where $_{II}$ presents the reference allele frequency for the $_{I}^{th}$ individual at the $_{I}^{th}$ SNP. $_{(0,0)}(\cdot)$ represents a Dirac delta function indicating a point mass at (0;0). In addition, $_{I}N(x;\cdot)$ denotes a normal density with mean and precision and $_{I}N(x;M;T)$ represents a p-dimensional multivariate normal with mean vector M and precision matrix T. For each of the Dirichlet Processes, we have assumed gamma priors for the scalar mass parameters $_{G}$ and $_{H}$ following ?; alternatively they could be taken as to be xed constants. Figure 1 displays the model as a directed acyclic graph (DAG).

0*i*

 Y_i

Step 1a: Perform the following proposal step for R iterations. For i = 1; 2; ...; N; propose a new distinct atom membership (s_i^*) for the i^{th} observation. The approach of ? uses the conditional prior as a proposal distribution for s_i^* . Let $s_{(-i)}$ denote the set of all conguration indicators minus s_i , and let $n^{(-i)}$

Although the above log target density does not take a standard distributional form, the density is log-concave, and so a new value for $_{jl}^*$ can be sampled using Adaptive-Rejection sampling (?).

STEP 2: Update for /

In order to update each $_{I}$, we employed the Blocked Gibbs Sampler of ?. The Blocked Gibbs Sampler is based on the stick-breaking representation of the Dirichlet Process, discussed in the work of ?. Although the stick-breaking representation of the DP involves an in nite sum of discrete points, in actual implementation, the Blocked Gibbs Sampler utilizes a nite approximation, imposing a limit F_L to the number of distinct atoms amongst the $_{I}$. Denote this collection of distinct points as $^* = ^*_{I} : ::::: ^*_{F_L} : ?$ show that even for large sample sizes, a limit of $F_L = 150$ provides a suitable approximation to the Dirichlet Process. Because of the point mass mixture construction in H_0 , without a loss of generality, we can include the additional distinct point *_0 to represent the cluster denoting no e ect (i.e. $^*_{I1} = 0$ and $^*_{I2} = 0$) with associated model weight *_1 . Similar to the con guration representation for *_1 , de ne the pointers z_I where $z_I = j$ if and only if $^*_1 = ^*_j$ for $j = 0;1;2;:::;F_L$. Then de ne *_1 as the number of z_I currently equal to j.

Step 2a: For $j=1;2;:::;F_L$; update $_j^*$. Note, because $_0^*$ represents the null e ect cluster, its value need not be updated. If $m_j=0$, then $_j^*\sim H_0$. Else draw $_j^*\sim MVN_2$ ($M^*;T^*$) where

$$T^* = G_j G_j + T$$
 $M^* = (T^*)^{-1} G_j Y - B_0 - X^{(-j)} + T M$

 Step 2b: For I = 1; 2; ...; L; independently sample z_I where,

$$P(z_{I} = 0) \propto L(Y|s; \frac{*}{0};)$$

$$P(z_{I} = j) \propto (1 -)p_{j}L Y|s; \frac{*}{j}; \quad \text{for } j = 1; 2; ...; F_{L}$$
where
$$2 \qquad \qquad ! \frac{3}{2}$$

$$L(Y|s; \frac{*}{j};) \propto \exp 4 \frac{-}{2} \underset{i=1}{\overset{N}{\times}} Y_{i} - \underset{0s_{i}}{\underset{j}{\times}} - \underset{c \neq I}{\overset{*}{\times}} (X_{ci} z_{c}) \qquad 5$$

Step 2c: Update and the stick-breaking weights (p_j) . Sample $\sim \text{Beta}(c_1 + m_0; d_1 + (L - m_0))$. Then for $j = 1; 2; ...; F_L$; set

$$\rho_1 = V_1
\rho_k = (1 - V_1)(1 - V_2)$$

STEP 3b: Update for $_H$

- 1. Sample $x_H|_H \sim \text{Beta}(_H; L)$
- 2. Let _H equal

$$G = \frac{{}_{3} + K_{H} - 1}{{}_{3} + K_{H} - 1 + L({}_{3} - \log(X_{H}))}$$

3. Sample $_{G}|x_{G};K_{G}\sim$

_H Gamma (
$$_3 + K_H$$
; $_3 - \log(x_H)$) + (1 - $_G$) Gamma ($_3 + K_H - 1$; $_3 - \log(x_H)$)

STEP 4: Update error precision

Sample \sim Gamma(*; *) where